
Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 1/46

MODBUS MESSAGING ON TCP/IP IMPLEMENTATION GUIDE
V1.0a

CONTENTS

1 INTRODUCTION ... 2
1.1 OBJECTIVES ... 2
1.2 CLIENT / SERVER MODEL... 2
1.3 REFERENCE DOCUMENTS ... 3

2 ABBREVIATIONS .. 3
3 CONTEXT ... 3

3.1 PROTOCOL DESCRIPTION ... 3
3.1.1 General communication architecture ... 3
3.1.2 MODBUS On TCP/IP Application Data Unit ... 4
3.1.3 MBAP Header description ... 5

3.2 MODBUS FUNCTIONS CODES DESCRIPTION .. 6
4 FUNCTIONAL DESCRIPTION.. 7

4.1 MODBUS COMPONENT ARCHITECTURE MODEL... 7
4.2 TCP CONNECTION MANAGEMENT ..10

4.2.1 Connections management Module..10
4.2.2 Impact of Operating Modes on the TCP Connection..................................13
4.2.3 Access Control Module ..14

4.3 USE of TCP/IP STACK ..14
4.3.1 Use of BSD Socket interface ..15
4.3.2 TCP layer parameterization ...18
4.3.3 IP layer parameterization ...19

4.4 COMMUNICATION APPLICATION LAYER ...20
4.4.1 MODBUS Client ...20
4.4.2 MODBUS Server ..26

5 IMPLEMENTATION GUIDELINE ...32
5.1 OBJECT MODEL DIAGRAM ..32

5.1.1 TCP management package ..33
5.1.2 Configuration layer package...35
5.1.3 Communication layer package..36
5.1.4 Interface classes..37

5.2 IMPLEMENTATION CLASS DIAGRAM...37
5.3 SEQUENCE DIAGRAMS..39
5.4 CLASSES AND METHODS DESCRIPTION ..42

5.4.1 MODBUS Server Class ..42
5.4.2 MODBUS Client Class..43
5.4.3 Interface Classes ...44
5.4.4 Connexion Management class..44

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 2/46

1 INTRODUCTION

1.1 OBJECTIVES

The objective of this document is to present the MODBUS messaging service over
TCP/IP , in order to provide reference information that helps software developers to
implement this service. The encoding of the MODBUS function codes is not described
in this document, for this information please read the MODBUS Application Protocol
Specification [1].

This document gives accurate and comprehensive description of a MODBUS messaging
service implementation. Its purpose is to facilitate the interoperability between the
devices using the MODBUS messaging service.

This document comprises mainly three parts:
• An overview of the MODBUS over TCP/IP protocol
• A functional description of a MODBUS client, server and gateway

implementation.
• An implementation guideline that proposes the object model of an MODBUS

implementation example.

1.2 CLIENT / SERVER MODEL
The MODBUS messaging service provides a Client/Server communication between
devices connected on an Ethernet TCP/IP network.
This client / server model is based on four type of messages:

• MODBUS Request,
• MODBUS Confirmation,
• MODBUS Indication,
• MODBUS Response

MODBUS Client MODBUS Server

Request Indication

ResponseConfirmation

A MODBUS Request is the message sent on the network by the Client to initiate a
transaction,

A MODBUS Indication is the Request message received on the Server side,

A MODBUS Response is the Response message sent by the Server,

A MODBUS Confirmation is the Response Message received on the Client side

The MODBUS messaging services (Client / Server Model) are used for real time
information exchange:

• between two device applications,
• between device application and other device,
• between HMI/SCADA applications and devices,
• between a PC and a device program providing on line services.

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 3/46

-

1.3 REFERENCE DOCUMENTS
This section gives a list of documents that are interesting to read before this one:

 [1] MODBUS Application Protocol Specification V1.1a.
 [2] RFC 1122 Requirements for Internet Hosts -- Communication Layers

2 ABBREVIATIONS

ADU Application Data Unit
IETF Internet Engineering Task Force
IP Internet Protocol
MAC Medium Access Control
MB MODBUS
MBAP MODBUS Application Protocol
PDU Protocol Data Unit
PLC Programmable Logic Controller
TCP Transport Control Protocol
BSD Berkeley Software Distribution
MSL Maximum Segment Lifetime

3 CONTEXT

3.1 PROTOCOL DESCRIPTION

3.1.1 General communication architecture

A communicating system over MODBUS TCP/IP may include different types of device:

• A MODBUS TCP/IP Client and Server devices connected to a TCP/IP network

• The Interconnection devices like bridge, router or gateway for interconnection
between the TCP/IP network and a serial line sub-network which permit
connections of MODBUS Serial line Client and Server end devices.

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 4/46

Figure 1: MODBUS TCP/IP communication architecture

The MODBUS protocol defines a simple Protocol Data Unit (PDU) independent of the
underlying communication layers. The mapping of MODBUS protocol on specific buses
or networks can introduce some additional fields on the Application Data Unit (ADU).

Additional address Function code Data Error check

ADU

PDU

Figure 2: General MODBUS frame

The client that initiates a MODBUS transaction builds the MODBUS Application Data
Unit. The function code indicates to the server which kind of action to perform.

3.1.2 MODBUS On TCP/IP Application Data Unit
This section describes the encapsulation of a MODBUS request or response when it is
carried on a MODBUS TCP/IP network.

Function code DataMBAP Header

PDU

MODBUS TCP/IP ADU

Figure 3: MODBUS request/response over TCP/IP

A dedicated header is used on TCP/IP to identify the MODBUS Application Data Unit. It
is called the MBAP header (MODBUS Application Protocol header).

MODBU
S Client
TCP/IP

MODBU
S Server
TCP/IP

MODBU
S Server
TCP/IP

MODBUS
Server

Serial Line

MODBUS
Server

Serial Line

MODBUS
Client

Serial Line

MODBU
S Client
TCP/IP

MODBUS

Client
TCP/IP

Server TCP/IP
gateway

MODBUS Serial

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 5/46

This header provides some differences compared to the MODBUS RTU application data
unit used on serial line:

 The MODBUS ‘slave address’ field usually used on MODBUS Serial Line is
replaced by a single byte ‘Unit Identifier’ within the MBAP Header. The
‘Unit Identifier’ is used to communicate via devices such as bridges,
routers and gateways that use a single IP address to support multiple
independent MODBUS end units.

 All MODBUS requests and responses are designed in such a way that the
recipient can verify that a message is finished. For function codes where
the MODBUS PDU has a fixed length, the function code alone is sufficient.
For function codes carrying a variable amount of data in the request or
response, the data field includes a byte count.

 When MODBUS is carried over TCP, additional length information is
carried in the MBAP header to allow the recipient to recognize message
boundaries even if the message has been split into multiple packets for
transmission. The existence of explicit and implicit length rules, and use of
a CRC-32 error check code (on Ethernet) results in an infinitesimal chance
of undetected corruption to a request or response message.

3.1.3 MBAP Header description

The MBAP Header contains the following fields:

Fields Length Description - Client Server

Transaction
Identifier

2 Bytes Identification of a
MODBUS Request /
Response transaction.

Initialized by the
client

Recopied by the
server from the
received
request

Protocol Identifier 2 Bytes 0 = MODBUS protocol Initialized by the
client

Recopied by the
server from the
received
request

Length 2 Bytes Number of following
bytes

Initialized by the
client (request)

Initialized by
the server (
Response)

Unit Identifier 1 Byte Identification of a
remote slave
connected on a serial
line or on other buses.

Initialized by the
client

Recopied by the
server from the
received
request

The header is 7 bytes long:

• Transaction Identifier - It is used for transaction pairing, the MODBUS server copies
in the response the transaction identifier of the request.

• Protocol Identifier – It is used for intra-system multiplexing. The MODBUS protocol
is identified by the value 0.

• Length - The length field is a byte count of the following fields, including the Unit
Identifier and data fields.

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 6/46

• Unit Identifier – This field is used for intra-system routing purpose. It is typically
used to communicate to a MODBUS or a MODBUS+ serial line slave through a
gateway between an Ethernet TCP-IP network and a MODBUS serial line. This field is
set by the MODBUS Client in the request and must be returned with the same value in
the response by the server.

All MODBUS/TCP ADU are sent via TCP on registered port 502.

Remark : the different fields are encoded in Big-endian.

3.2 MODBUS FUNCTIONS CODES DESCRIPTION
Standard function codes used on MODBUS application layer protocol are described in
details in the MODBUS Application Protocol Specification [1].

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 7/46

4 FUNCTIONAL DESCRIPTION

The MODBUS Component Architecture presented here is a general model including
both MODBUS Client and Server Components and usable on any device.

Some devices may only provide the server or the client component.

In the first part of this section a brief overview of the MODBUS messaging service
component architecture is given, followed by a description of each component
presented in the architectural model.

4.1 MODBUS COMPONENT ARCHITECTURE MODEL

USER
APPLICATION

Communication
Application

Layer

Modbus Client Modbus Server

Modbus Client
Interface

TCP
Management

Connection
 Management Access Ctl

TCP/IP Stack

Stack
parmeterization

Modbus Backend
Interface

R
es

so
ur

ce
 M

an
ag

em
en

t
&

Fl
ow

 C
on

tro
l

Figure 4: MODBUS Messaging Service Conceptual Architecture

• Communication Application Layer

 A MODBUS device may provide a client and/or a server MODBUS interface.

 A MODBUS backend interface can be provided allowing indirectly the access to user
application objects.
 Four areas can compose this interface: input discrete, output discrete (coils), input
registers and output registers. A pre-mapping between this interface and the user
application data has to be done (local issue).

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 8/46

Primary tables Object type Type of Comments

 Discretes Input Single bit Read-Only
This type of data can be provided by an I/O system.

Coils Single bit Read-Write
This type of data can be alterable by an application
program.

Input Registers 16-bit word Read-Only
This type of data can be provided by an I/O system

Holding Registers 16-bit word Read-Write
This type of data can be alterable by an application
program.

Input Discrete

MODBUS access

Device application memory

MODBUS SERVER DEVICE

MODBUS RequestCoils

Input Registers

Output Registers

Figure 5 MODBUS Data Model with
separate blocks

Device application memory

MODBUS SERVER DEVICE

MODBUS Request

Input Discrete

MODBUS access

Coils

Input Registers

Output Registers

R
W

R

W

Figure 6 MODBUS Data Model with only
1 block

 MODBUS Client

 The MODBUS Client allows the user application to explicitly control information
exchange with a remote device. The MODBUS Client builds a MODBUS request from
parameter contained in a demand sent by the user application to the MODBUS Client
Interface.
 The MODBUS Client uses a MODBUS transaction whose management includes waiting
for and processing of a MODBUS confirmation.

 MODBUS Client Interface

The MODBUS Client Interface provides an interface enabling the user application to
build the requests for various MODBUS services including access to MODBUS
application objects. The MODBUS Client interface (API) is not part of this
Specification, although an example is described in the implementation model.

 MODBUS Server

 On reception of a MODBUS request this module actives a local action to read, to write
or to achieve some other actions. The processing of these actions is done totally
transparently for the application programmer. The main MODBUS server functions are
to wait for a MODBUS request on 502 TCP port, to treat this request and then to build a
MODBUS response depending on device context.

 MODBUS Backend Interface

The MODBUS Backend Interface is an interface from the MODBUS Server to the user
application in which the application objects are defined.

Informative Note: The Backend Interface is not defined in this Specification

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 9/46

• TCP Management layer

 Informative Note: The TCP/IP discussion in this Specification is based in part upon
reference [2] RFC 1122 to assist the user in implementing the MODBUS Application
Protocol Specification [1] over TCP/IP.

 One of the main functions of the messaging service is to manage communication
establishment and ending and to manage the data flow on established TCP
connections.

 Connection Management

 A communication between a client and server MODBUS Module requires the use of a
TCP connection management module. It is in charge to manage globally messaging
TCP connections.

 Two possibilities are proposed for the connection management. Either the user
application itself manages TCP connections or the connection management is totally
done by this module and therefore it is transparent for the user application. The last
solution implies less flexibility.

 The listening TCP port 502 is reserved for MODBUS communications. It is
mandatory to listen by default on that port. However, some markets or applications
might require that another port is dedicated to MODBUS over TCP. For that reason, it
is highly recommended that the clients and the servers give the possibility to the user
to parameterize the MODBUS over TCP port number. It is important to note that
even if another TCP server port is configured for MODBUS service in certain
applications, TCP server port 502 must still be available in addition to any
application specific ports.

 Access Control Module

 In certain critical contexts, accessibility to internal data of devices must be forbidden for
undesirable hosts. That’s why a security mode is needed and security process may be
implemented if required.

• TCP/IP Stack layer

The TCP/IP stack can be parameterized in order to adapt the data flow control, the
address management and the connection management to different constraints specific
to a product or to a system. Generally the BSD socket interface is used to manage the
TCP connections.

 Resource management and Data flow control

 In order to equilibrate inbound and outbound messaging data flow between the
MODBUS client and the server, data flow control mechanism is provided in all layers
of MODBUS messaging stack.
 The resource management and flow control module is first based on TCP internal flow
control added with some data flow control in the data link layer and also in the user
application level.

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 10/46

4.2 TCP CONNECTION MANAGEMENT

4.2.1 Connections management Module

4.2.1.1 General description

A MODBUS communication requires the establishment of a TCP connection between a
Client and a Server.
The establishment of the connection can be activated either explicitly by the User
Application module or automatically by the TCP connection management module.
In the first case an application-programming interface has to be provided in the user
application module to manage completely the connection. This solution provides
flexibility for the application programmer but it requires a good expertise on TCP/IP
mechanism.
In the second case the TCP connection management is completely hidden to the user
application that only sends and receives MODBUS messages. The TCP connection
management module is in charge to establish a new TCP connection when it is
required.
The definition of the number of TCP client and server connections is not on the scope of
this document (value n in this document). Depending on the device capacities the
number of TCP connections can be different.

Implementation Rules :

1) Without explicit user requirement, it is recommended to implement the automatic TCP
connection management

2) It is recommended to keep the TCP connection opened with a remote device and not
to open and close it for each MODBUS/TCP transaction,
Remark: However the MODBUS client must be capable of accepting a close request
from the server and closing the connection. The connection can be reopened when
required.

3) It is recommended for a MODBUS Client to open a minimum of TCP connections with
a remote MODBUS server (with the same IP address). One connection per application
could be a good choice.

4) Several MODBUS transactions can be activated simultaneously on the same TCP
Connection.
Remark: If this is done then the MODBUS transaction identifier must be used to
uniquely identify the matching requests and responses.

5) In case of a bi-directional communication between two remote MODBUS entities (
each of them is client and server), it is necessary to open separate connections for
the client data flow and for the server data flow.

6) A TCP frame must transport only one MODBUS ADU. It is advised against sending
multiple MODBUS requests or responses on the same TCP PDU

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 11/46

Request_treatment

Connection_established

Wait

Oldest_unused_
connection_closed

Connection_establishment

Idle

Connection_accepted

Oldest_unused_
no_prioritary_
connection_closed

Active_Connection

network_transmission
Request_treatment

Connection_established

Wait

Connection_accepted

Connection_refused

Active_Connection

network_transmission

[connection established]

[Connection OK]

[< n connections]

[access ctl]

[connection request]

[IP forbidden]

[<n connections]

[data]

[no access ctl]

[Connection NOK]

[______Event on a socket[Request to a remote

[IP authorized]

[n connections]

[n connections]

[else]

Figure 7: TCP connection management activity diagram

1. Explicit TCP connection management

The user application module is in charge of managing all the TCP connections: active
and passive establishment, connection ending, etc. This management is done for all
MODBUS communication between a client and a server. The BSD Socket interface is
used in the user application module to manage the TCP connection. This solution offers
a total flexibility but it implies that the application programmer has sufficient TCP
knowledge.
A limit of number of client and server connections has to be configured taking into
account the device capabilities and requirement.

2. Automatic TCP connection management

The TCP connection management is totally transparent for the user application module.
The connection management module may accept a sufficient number of client and
server connections.
Nevertheless a mechanism must be implemented in case of exceeding the number of
authorized connection. In such a case we recommend to close the oldest unused
connection.
A connection with a remote partner is established at the first packet received from a
remote client or from the local user application. This connection will be closed if a
termination arrived from the network or decided locally on the device. On reception of a
connection request, the access control option can be used to forbid device accessibility
to unauthorized clients.

Client Server

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 12/46

The TCP connection management module uses the Stack interface (usually BSD Socket
interface) to communicate with the TCP/IP stack.

In order to maintain compatibility between system requirements and server resources,
the TCP management will maintain 2 pools of connection.

 The first pool (priority connection pool) is made of connections that are never
closed on a local initiative. A configuration must be provided to set this pool up. The
principle to be implemented is to associate a specific IP address with each possible
connection of this pool. The devices with such IP addresses are said to be
“marked”. Any new connection that is requested by a marked device must be
accepted, and will be taken from the priority connection pool. It is also necessary to
configure the maximum number of Connections allowed for each remote device to
avoid that the same device uses all the connections of the priority pool.

 The second pool (non-priority connection pool) contains connections for non
marked devices. The rule that takes over here is to close the oldest connection
when a new connection request arrives from a non-marked device and when there
is no more connection available in the pool.

A configuration might be optionally provided to assign the number of connections
available in each pool. However (It is not mandatory) the designers can set the number
of connections at design time if required.

4.2.1.2 Connection management description

• Connection establishment :

 The MODBUS messaging service must provide a listening socket on Port 502, which
permits to accept new connection and to exchange data with other devices.
 When the messaging service needs to exchange data with a remote server, it must
open a new client connection with a remote Port 502 in order to exchange data with this
distant. The local port must be higher than 1024 and different for each client
connection.

Device Device

Client
Ports

Server
Port

502

n
(n>1024)

Server
Port

Client
Ports

502

n
(n>1024)Connection (@ IP1 n,

@IP2 502)

@ IP1 @ IP2

 Figure 8: MODBUS TCP connection establishment

 If the number of client and server connections is greater than the number of authorized
connections the oldest unused connection is closed. The access control mechanism
can be activated to check if the IP address of the remote client is authorized. If not the
new connection is refused.

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 13/46

• MODBUS data transfer

A MODBUS request has to be sent on the right TCP connection already opened. The IP
address of the remote is used to find the TCP connection. In case of multiple TCP
connections opened with the same remote, one connection has to be chosen to send
the MODBUS message, different choice criteria can be used like the oldest one, the
first one. The connection has to maintain open during all the MODBUS communications.
As described in the following sections a client can initiate several MODBUS
transactions with a server without waiting the ending of the previous one.

 Connection closing

When the MODBUS communications are ended between a Client and a Server, the
client has to initiate a connection closing of the connection used for these
communications.

4.2.2 Impact of Operating Modes on the TCP Connection

Some Operating Modes (communication break between two operational End Points,
Crash and Reboot on one of the End Point, …) may have impacts on the TCP
Connections. A connection can be seen closed or aborted on one side without the
knowledge of the other side. The connection is said to be "half-open".
This section describes the behavior for each main Operating Modes. It is assumed that
the Keep Alive TCP mechanism is used on both end points (See section 4.3.2)

4.2.2.1 Communication break between two operational end points:

The origin of the communication break can be the disconnection of the Ethernet cable
on the Server side. The expected behavior is:

• If no packet is currently sent on the connection:
The communication break will not be seen if it lasts less than the Keep Alive timer
value. If the communication break lasts more than the Keep Alive timer value, an
error is returned to the TCP Management layer that can reset the connection.

• If Some packets are sent before and after the disconnection:
The TCP retransmission algorithms (Jacobson's, Karn's algorithms and exponential
backoff. See section 4.3.2) are activated. This may lead to a stack TCP layer Reset
of the Connection before the Keep Alive timer is over.

4.2.2.2 Crash and Reboot of the Server end point

After the crash and Reboot of the Server, the connection is "half-open" on Client side.
The expected behavior is:

• If no packet is sent on the half-open connection:
The TCP half-open connection is seen opened from the Client side as long as the
Keep Alive timer is not over. After that an error is returned to the TCP Management
layer that can reset the connection.

• If some packets are sent on the half-open connection:
The Server receives data on a connection that doesn't exist anymore. The stack
TCP layer sends a Reset to close the half-open connection on the Client side

4.2.2.3 Crash and Reboot of the Client

After the crash and Reboot of the Client, the connection is "half-open" on Server side.
The expected behavior is:

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 14/46

• No packet is sent on the half-open connection:
The TCP half-open connection is seen opened from the Server side as long as the
Keep Alive timer is not over. After that an error is returned to the TCP Management
layer that can reset the connection.

• If the Client opens a new connection before the Keep Alive timer is over :
 Two cases have to be studied:

 The connection opening has the same characteristics as the half-open
connection on the server side (same source and destination Ports, same source
and destination IP Addresses), therefore the connection opening will fail at the
TCP stack level after the Time-Out on Connection Establishment (75s on most of
Berkeley implementations). To avoid this long Time-Out during which it is not
possible to communicate, it is advised to ensure that different source port
numbers than the previous one are used for a connection opening after a reboot
on the client side.

 The connection opening has not the same characteristics as the half-open
connection on the server side (different source Ports, same destination Port,
same source and destination IP Address), therefore the connection is opened at
the stack TCP level and signaled to the Server TCP Management layer.
If the Server TCP Management layer only supports one connection from a remote
Client IP Address, it can close the old half-opened connection and use the new
one.
If the Server TCP Management layer supports several connections from a remote
Client IP Address, the new connection stays opened and the old one also stays
half-opened until the expiration of the Keep Alive Timer that will return an error to
the TCP Management layer. After that the TCP Management layer will be able to
Reset the old connection.

4.2.3 Access Control Module
The goal of this module is to check every new connection and using a list of authorized
remote IP addresses the module can authorize or forbid a remote Client TCP
connection.

In critical context the application programmer needs to choose the Access Control
mode in order to secure its network access. In such a case he needs to Authorize/forbid
access for each remote @IP. The user needs to provide a list of IP addresses and to
specify for each IP address if it’s authorized or not. By default, on security mode, the IP
addresses not configured by the user are forbidden. Therefore with the access control
mode a connection coming from an unknown IP address is closed.

4.3 USE of TCP/IP STACK

A TCP/IP stack provides an interface to manage connections, to send and receive data,
and also to do some parameterizations in order to adapt the stack behavior to the
device or system constraints.

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 15/46

Network AccessNetwork Access
Ethernet II and 802.3 layerEthernet II and 802.3 layer

 MsgMsg

TCPTCP

ModbusModbus

IPIP
ICMPICMP

ARPARP

The goal of this section is to give
an overview of the Stack interface
and also some information
concerning the parameterization of
the stack. This overview focuses
on the features used by the
MODBUS Messaging.

For more information, the advice is to read the RFC 1122 that provides guidance for
vendors and designers of Internet communication software. It enumerates standard
protocols that a host connected to the Internet must use as well as an explicit set of
requirements and options.
The stack interface is generally based on the BSD (Berkeley Software Distribution)
Interface that is described in this document.
.

4.3.1 Use of BSD Socket interface
Remark : some TCP/IP stacks propose other types of interfaces for performance
issues. A MODBUS client or server can use these specific interfaces, but this use will
be not described in this specification.

A socket is an endpoint of communication. It is the basic building block for
communication. A MODBUS communication is executed by sending and receiving data
through sockets. The TCPIP library provides only stream sockets using TCP and
providing a connection-based communication service.
The Sockets are created via the socket () function. A socket number is returned, which
is then used by the creator to access the socket. Sockets are created without
addresses (IP address and port number). Until a port is bound to a socket, it cannot be
used to receive data.
The bind () function is used to bind a port number to a socket. The bind () creates an
association between the socket and the port number specified.
In order to initiate a connection, the client must issue the connect () function specifying
the socket number, the remote IP address and the remote listening port number (active
connection establishment).
In order to complete a connection, the server must issue the accept () function
specifying the socket number that was specified in the prior listen () call (passive
connection establishment). A new socket is created with the same properties as the
initial one. This new socket is connected to the client’s socket, and its number is
returned to the server. The initial socket is thereby free for other clients that might want
to connect with the server.

After the establishment of the TCP connection the data can be transferred. The send()
and recv() functions are designed specifically to be used with sockets that are already
connected.

The setsockopt () function allows a socket’s creator to associate options with a socket.
These options modify the behavior of the socket. The description of these options is
given in the section 4.3.2.

The select () function allows the programmer to test events on all sockets.

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 16/46

The shutdown () function allows a socket user to disable send () and/or receive () on
the socket.

Once a socket is no longer needed, its socket descriptor can be discarded by using the
close () function.

Figure 39: MODBUS Exchanges describes a full MODBUS communication between a
client and a s server. The Client establishes the connection and sends 3 MODBUS
requests to the server without waiting the response of the first one. After receiving all
the responses the Client closes the connection properly.

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 17/46

CLIENT
(IP1)

fd=socket()

bind(fd,n)

connect(fd,IP2,502)

send(fd)

SERVER
(IP2)

fd'=socket()

bind(fd',502)

listen(fd')

fd''=accept(fd')

recv(fd'')

MODBUS Request PDU 1MODBUS Request PDU i

send(fd)

recv(fd'')

send(fd")

MODBUS Response PDU 1

recv(fd)

MODBUS Request PDU N

send(fd)

MODBUS Response PDU i

recv(fd) recv(fd'')

MODBUS Response PDU N

recv(fd) send(fd")

send(fd")

close(fd)

close(fd")

SYN J

SYN K, ACK J+1

ACK K+1

FIN

ACK of FIN

FIN

ACK of FIN

Figure 9: MODBUS Exchanges

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 18/46

4.3.2 TCP layer parameterization
Some parameters of the TCP/IP stack can be adjusted to adapt its behavior to the
product or system constraints. The following parameters can be adjusted in the TCP
layer:

• Parameters for each connection:

SO-RCVBUF, SO-SNDBUF:

These parameters allow setting the high water mark for the Send and the Receive
Socket. They can be adjusted for flow control management. The size of the received
buffer is the maximum size advertised window for that connection. Socket buffer sizes
must be increased in order to increase performances. Nevertheless these values must
be smaller than internal driver resources in order to close the TCP window before
exhausting internal driver resources.

The received buffer size depends on the TCP Windows size, the TCP Maximum
segment size and the time needed to absorb the incoming frames. With a Maximum
Segment Size of 300 bytes (a MODBUS request needs a maximum of 256 bytes + the
MBAP header size), if we need 3 frames buffering, the socket buffer size value can be
adjusted to 900 bytes. For biggest needs and best-scheduled time, the size of the TCP
window may be increased.

TCP-NODELAY:

Small packets (called tinygrams) are normally not a problem on LANs, since most LANs
are not congested, but these tinygrams can lead to congestion on wide area networks.
A simple solution, called the "NAGLE algorithm", is to collect small amounts of data and
sends them in a single segment when TCP acknowledgments of previous packets
arrive.
In order to have better real-time behavior it is recommended to send small amounts of
data directly without trying to gather them in a single segment. That is why it is
recommended to force the TCP-NODELAY option that disables the "NAGLE algorithm"
on client and server connections.

SO-REUSEADDR:

When a MODBUS server closes a TCP connection initialized by a remote client, the
local port number used for this connection cannot be reused for a new opening while
that connection stays in the "Time-wait" state (during two MSL : Maximum Segment
Lifetime).

It is recommended specifying the SO-REUSEADDR option for each client and server
connection to bypass this restriction. This option allows the process to assign itself a
port number that is part of a connection that is in the 2MSL wait for client and listening
socket.

SO-KEEPALIVE:

By default on TCP/IP protocol no data are sent across an idle TCP connection.
Therefore if no process at the ends of a TCP connection is sending data to the other,
nothing is exchanged between the two TCP modules. This assumes that either the
client application or the server application uses timers to detect inactivity in order to
close a connection.
It is recommended to enable the KEEPALIVE option on both client and server
connection in order to poll the other end to know if the distant has either crashed and is
down or crashed and rebooted.
Nevertheless we must keep on mind that enabling KEEPALIVE can cause perfectly
good connections to be dropped during transient failures, that it consumes unnecessary
bandwidth on the network if the keep alive timer is too short.

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 19/46

• Parameters for the whole TCP layer:

Time Out on establishing a TCP Connection:

Most Berkeley-derived systems set a time limit of 75 seconds on the establishment of a
new connection, this default value should be adapted to the real time constraint of the
application.

Keep Alive parameters:

The default idle time for a connection is 2 hours. Idles times in excess of this value
trigger a keep alive probe. After the first keep alive probe, a probe is sent every 75
seconds for a maximum number of times unless a probe response is received.
The maximum number of keep Alive probes sent out on an idle connection is 8. If no
probe response is received after sending out the maximum number of keep Alive
probes,TCP signals an error to the application that can decide to close the connection

Time-out and retransmission parameters:

A TCP packet is retransmitted if its loss has been detected. One way to detect the loss
is to manage a Retransmission Time-Out (RTO) that expires if no acknowledgement
has been received from the remote side.
TCP manages a dynamic estimation of the RTO. For that purpose a Round-Trip Time
(RTT) is measured after the send of every packet that is not a retransmission. The
Round-Trip Time (RTT) is the time taken for a packet to reach the remote device and to
get back an acknowledgement to the sending device. The RTT of a connection is
calculated dynamically, nevertheless if TCP cannot get an estimate within 3 seconds,
the default value of the RTT is set to 3 seconds.
If the RTO has been estimated, it applies to the next packet sending. If the
acknowledgement of the next packet is not received before the estimated RTO
expiration, the Exponential BackOff is activated. A maximum number of
retransmissions of the same packet is allowed during a certain amount of time. After
that if no acknowledgement has been received, the connection is aborted.
The maximum number of retransmissions and the maximum amount of time before the
abort of the connection (tcp_ip_abort_interval) can be set up on some stacks.

Some retransmission algorithms are defined in TCP standards :

 The Jacobson's RTO estimation algorithm is used to estimate the
Retransmission Time-Out (RTO),

 The Karn's algorithm says that the RTO estimation should not be done on a
retransmitted segment,

 The Exponential BackOff defines that the retransmission time-out is doubled for
each retransmission with an upper limit of 64 seconds.

 The fast retransmission algorithm allows retransmitting after the reception of
three duplicate acknowledgments. This algorithm is advised because on a LAN it
may lead to a quicker detection of the loss of a packet than waiting for the RTO
expiration.

The use of these algorithms is recommended for a MODBUS implementation.

4.3.3 IP layer parameterization

4.3.3.1 IP Parameters
The following parameters must be configured in the IP layer of a MODBUS
implementation :

• Local IP Address : the IP address can be part of a Class A, B or C.

• Subnet Mask, : Subnetting an IP Network can be done for a variety of reasons : use of
different physical media (such as Ethernet, WAN, etc.), more efficient use of

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 20/46

network addresses, and the capability to control network traffic. The Subnet Mask
has to be consistent with the IP address class of the local IP address.

• Default Gateway: The IP address of the default gateway has to be on the same
subnet as the local IP address. The value 0.0.0.0 is forbidden. If no gateway is to be
defined then this value is to be set to either 127.0.0.1 or the Local IP address.

Remark : The MODBUS messaging service doesn't require the fragmentation function in
the IP layer.

The local IP End Point shall be configured with a local IP Address and with a Subnet
Mask and a Default Gateway (different from 0.0.0.0) .

4.4 COMMUNICATION APPLICATION LAYER

4.4.1 MODBUS Client

Modbus
Client

TCP/IP

Modbus
Server
TCP/IP

Modbus
Server
TCP/IP

Modbus
Server

Serial Line

Modbus
Server

Serial Line

Modbus
Client

Serial Line

Modbus
Client

TCP/IP

Modbus TCP / IP

Client TCP/IP
gateway

Server TCP/IP
gateway

Modbus Serial line

Figure 10: MODBUS Client unit

4.4.1.1 MODBUS client design

The definition of the MODBUS/TCP protocol allows a simple design of a client. The
following activity diagram describes the main treatments that are processed by a client
to send a MODBUS request and to treat a MODBUS response.

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 21/46

Send negative
confirmation to user
Application

Process
MODBUS
Confirmation

Set Waiting
response timer

Send MODBUS request
To TCP management

Wait

Find out pending
transaction

Idle

Send positive
confirmation to
User Application

Build MODBUS
request

Wait

Idle

[Retries number reached]

[Request_from_the_user application]

[Confirmation error]

Waiting_response_timer_expires

[Reveive_Response_from_TCP_Mgt]

[Retries number not reached]

[Confirmation OK]

[Send Not OK] [Send OK]

Figure 11: MODBUS Client Activity Diagram

A MODBUS client can receive three events:
 A new demand from the user application to send a request, in this case a MODBUS

request has to be encoded and be sent on the network using the TCP management
component service. The lower layer (TCP management module) can give back an
error due to a TCP connection error, or some other errors.

 A response from the TCP management, in this case the client has to analyze the
content of the response and send a confirmation to the user application

 The expiration of a Time out due to a non-response. A new retry can be sent on the
network or a negative confirmation can be sent to the User Application.
Remark : These retries are initiated by the MODBUS client, some other retries can
also be done by the TCP layer in case of TCP acknowledge lack.

4.4.1.2 Build a MODBUS Request
Following the reception of a demand from the user application, the client has to build a
MODBUS request and to send it to the TCP management.
Building the MODBUS request can be split in several sub-tasks:

 The instantiation of a MODBUS transaction that enables the Client to memorize all
required information in order to bind later the response to the request and to send
the confirmation to the user application.

 The encoding of the MODBUS request (PDU + MPAB header). The user application
that initiates the demand has to provide all required information which enables the
Client to encode the request. The MODBUS PDU is encoded according to the
MODBUS Application Protocol Specification [1]. (MB function code, associated
parameters and application data). All fields of the MBAP header are filled. Then,
the MODBUS request ADU is built prefixing the PDU with the MBAP header

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 22/46

 The sending of the MODBUS request ADU to the TCP management module which is
in charge of finding the right TCP socket towards the remote Server. In addition to
the MODBUS ADU the Destination IP address must also be passed.

The following activity diagram describes, more deeply than in Figure 11 MODBUS
Client Activity Diagram, the request building phase.

Instantiate a MB
transaction

Initialize the
transaction

Send MB
request to TCP
Mgt

Send a
negative
confirmation to
the user
application

Encode the MB
request PDU

Encode the
MBAP header

[No Transaction available]

[Transaction available]

Figure 12: Request building activity diagram

The following example describes the MODBUS request ADU encoding for reading the
register # 5 in a remote server :

♦ MODBUS Request ADU encoding :

Description Size Example
Transaction Identifier Hi 1 0x15
Transaction Identifier Lo 1 0x01
Protocol Identifier 2 0x0000
Length 2 0x0006

MBAP Header

Unit Identifier 1 0xFF

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 23/46

Function Code (*) 1 0x03
Starting Address 2 0x0004

MODBUS
request

Quantity of Registers 2 0x0001

(*) please see the MODBUS Application Protocol Specification [1].

• Transaction Identifier

The transaction identifier is used to associate the future response with the request.
So, at a time, on a TCP connection, this identifier must be unique. There are
several manners to use the transaction identifier:

- For example, it can be used as a simple "TCP sequence number" with a
counter which is incremented at each request.

- It can also be judiciously used as a smart index or pointer to identify a
transaction context in order to memorize the current remote server and the
pending MODBUS request.

Normally, on MODBUS serial line a client must send one request at a time. This means
that the client must wait for the answer to the first request before sending a second
request. On TCP/MODBUS, several requests can be sent without waiting for a
confirmation to the same server. The MODBUS/TCP to MODBUS serial line gateway is
in charge of ensuring compatibility between these two behaviors.
The number of requests accepted by a server depends on its capacity in term of
number of resources and size of the TCP windows. In the same way the number of
transactions initialized simultaneously by a client depends also on its resource capacity.
This implementation parameter is called "NumberMaxOfClientTransaction" and must
be described as one of the MODBUS client features. Depending of the device type this
parameter can take a value from 1 to 16.

• Unit Identifier

This field is used for routing purpose when addressing a device on a MODBUS or
MODBUS+ serial line sub-network. In that case, the “Unit Identifier” carries the
MODBUS slave address of the remote device:

If the MODBUS server is connected to a MODBUS+ or MODBUS Serial Line
sub-network and addressed through a bridge or a gateway, the MODBUS Unit
identifier is necessary to identify the slave device connected on the sub-
network behind the bridge or the gateway. The destination IP address
identifies the bridge itself and the bridge uses the MODBUS Unit identifier to
forward the request to the right slave device.
The MODBUS slave device addresses on serial line are assigned from 1 to
247 (decimal). Address 0 is used as broadcast address.

On TCP/IP, the MODBUS server is addressed using its IP address; therefore, the
MODBUS Unit Identifier is useless. The value 0xFF has to be used.

When addressing a MODBUS server connected directly to a TCP/IP network,
it’s recommended not using a significant MODBUS slave address in the “Unit
Identifier” field. In the event of a re-allocation of the IP addresses within an
automated system and if a IP address previously assigned to a MODBUS
server is then assigned to a gateway, using a significant slave address may
cause trouble because of a bad routing by the gateway. Using a non-
significant slave address, the gateway will simply discard the MODBUS PDU
with no trouble. 0xFF is recommended for the “Unit Identifier" as non-
significant value.
Remark : The value 0 is also accepted to communicate directly to a
MODBUS/TCP device.

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 24/46

4.4.1.3 Process MODBUS Confirmation
When a response frame is received on a TCP connection, the Transaction Identifier
carried in the MBAP header is used to associate the response with the original request
previously sent on that TCP connection:

 If the Transaction Identifier doesn't refer to any MODBUS pending transaction, the
response must be discarded.

 If the Transaction Identifier refers to a MODBUS pending transaction, the response
must be parsed in order to send a MODBUS Confirmation to the User Application
(positive or negative confirmation)

Parsing the response consists in verifying the MBAP Header and the MODBUS PDU
response:

 MBAP Header
After the verification of the Protocol Identifier that must be 0x0000, the length gives
the size of the MODBUS response.
If the response comes from a MODBUS server device directly connected to the
TCP/IP network, the TCP connection identification is sufficient to unambiguously
identify the remote server. Therefore, the Unit Identifier carried in the MBAP
header is not significant (value 0xFF) and must be discarded.
If the remote server is connected on a Serial Line sub-network and the response
comes from a bridge, a router or a gateway, then the Unit Identifier (value != 0xFF)
identifies the remote MODBUS server which has originally sent the response.

 MODBUS Response PDU
The function code must be verified and the MODBUS response format analyzed
according to the MODBUS Application Protocol:
• if the function code is the same as the one used in the request, and if the

response format is correct, then the MODBUS response is given to the user
application as a Positive Confirmation.

• If the function code is a MODBUS exception code (Function code + 80H), the
MODBUS exception response is given to the user application as a Positive
Confirmation.

• If the function code is different from the one used in the request (=non
expected function code), or if the format of the response is incorrect, then an
error is signaled to the user application using a Negative Confirmation.

Remark: A positive confirmation is a confirmation that the command was received and
responded to by the server. It does not imply that the server was able to successfully
act on the command (failure to successfully act on the command is indicated by the
MODBUS Exception response).

The following activity diagram describes, more deeply than in Figure 11 MODBUS
Client Activity Diagram, the confirmation processing phase.

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 25/46

Use MB transaction to
bind with the request

Process_MB_
exception

Find Out pending
MB transaction

Extract MB
Response

Discard
Response

Analyse MBAP header

Analyse Response
PDU

Wait

Send positive
confirmation to user
application

Send negative
Confirmation to
user Application

Wait

[Modbus_protocol]

[No Pending Transaction]

[Incorrect Response]

[Other_protocol]

[MB Exception response]

[MB response OK]

[PendingTransaction]

Figure 13: Process MODBUS Confirmation activity diagram

4.4.1.4 Time-out management

There is deliberately NO specification of required response time for a transaction over
MODBUS/TCP.
This is because MODBUS/TCP is expected to be used in the widest possible variety of
communication situations, from I/O scanners expecting sub-millisecond timing to long
distance radio links with delays of several seconds.
From a client perspective, the timeout must take into account the expected transport
delays across the network, to determine a ‘reasonable’ response time. Such transport
delays might be milliseconds for a switched Ethernet, or hundreds of milliseconds for a
wide area network connection.
In turn, any ‘timeout’ time used at a client to initiate an application retry should be
larger than the expected maximum ‘reasonable’ response time. If this is not followed,
there is a potential for excessive congestion at the target device or on the network,
which may in turn cause further errors. This is a characteristic, which should always be
avoided.

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 26/46

So in practice, the client timeouts used in high performance applications are always
likely to be somewhat dependent on network topology and expected client performance.
Applications which are not time critical can often leave timeout values to the normal
TCP defaults, which will report communication failure after several seconds on most
platforms.

4.4.2 MODBUS Server

Modbus
Client

TCP/IP

Modbus
Server
TCP/IP

Modbus
Server
TCP/IP

Modbus
Server

Serial Line

Modbus
Server

Serial Line

Modbus
Client

Serial Line

Modbus
Client

TCP/IP

Modbus TCP / IP

Client TCP/IP
gateway

Server TCP/IP
gateway

Modbus Serial line

Figure 14: MODBUS Server unit

The role of a MODBUS server is to provide access to application objects and services
to remote MODBUS clients.

Different kind of access may be provided depending on the user application :
 simple access like get and set application objects attributes
 advanced access in order to trigger specific application services

The MODBUS server has:
 To map application objects onto readable and writable MODBUS objects, in order

to get or set application objects attributes.
 To provide a way to trigger services onto application objects.

In run time the MODBUS server has to analyze a received MODBUS request, to
process the required action, and to send back a MODBUS response.

Informative Note: The application objects and services of the Backend Interface obtain
the requested data based upon the function code, and the User is responsible.

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 27/46

4.4.2.1 MODBUS Server Design

The MODBUS Server design depends on both :

 the kind of access to the application objects (simple access to attributes or
advanced access to services)

 the kind of interaction between the MODBUS server and the user application
(synchronous or asynchronous).

The following activity diagram describes the main treatments that are processed by the
Server to obtain a MODBUS request from TCP Management, then to analyze the
request, to process the required action, and to send back a MODBUS response.

Build a MODBUS
response

Wait

MODBUS_PDU_Checking...

Idle

Build a MODBUS
Exception

Send response
to TCP_Mgt

MODBUS_Service_Processing

Invoke back
end interface

Response
processing

Release the
MODBUS server
transaction

Wait

MODBUS_PDU_Checking...

[Processing OK] [Processing OK]

[Need user application processing]

[Server init]

[Reception of a MODBUS indication
from TCP Mgt]

[Response from user application]

[MODBUS transaction accepted]

[MB transaction refused]

[MB Indication discarded]

[Invocation user application done]

[Processing not OK]

[Processing not complete]

[MB Exception OK]

[processing ends]

[Processing not OK]

[MB Response OK]

Figure 15: Process MODBUS Indication activity diagram

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 28/46

As shown in the previous activity diagram:

 Some services can be immediately processed by the MODBUS Server itself, with
no direct interaction with the User Application ;

 Some services may require also interacting explicitly with the User Application to
be processed ;

 Some other advanced services require invoking a specific interface called
MODBUS Back End service. For example, a User Application service may be
triggered using a sequence of several MODBUS request/response transactions
according to a User Application level protocol. The Back End service is
responsible for the correct processing of all individual MODBUS transactions in
order to execute the global User Application service.

A more complete description is given in the following sections.

The MODBUS server can accept to serve simultaneously several MODBUS requests.
The maximum number of simultaneous MODBUS requests the server can accept is one
of the main characteristics of a MODBUS server. This number depends on the server
design and its processing and memory capabilities. This implementation parameter is
called "NumberMaxOfSeverTransaction" and must be described as one of the
MODBUS server features. It may have a value from 1 to 16 depending on the device
capabilities.

The behavior and the performance of the MODBUS server are significantly affected by
the "NumberMaxOfTransaction" parameter. Particularly, it's important to note that the
number of concurrent MODBUS transactions managed may affect the response time of
a MODBUS request by the server.

4.4.2.2 MODBUS PDU Checking

The following diagram describes the MODBUS PDU Checking activity.

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 29/46

Parse the
MBAP header

Instantiate a
MB Transaction

MB Indication
discarded

MB Transaction
refused

MB Transaction
accepted

Parse The MB
PDU

[MBAP OK]

[Transaction available]

[OK]

[No Transaction available]

[Error on MB PDU]

[Error on MBAP]

Figure 16: MODBUS PDU Checking activity diagram

The MODBUS PDU Checking function consists of first parsing the MBAP Header. The
Protocol Identifier field has to be checked :

 If it is different from MODBUS protocol type, the indication is simply discarded.
 If it is correct (= MODBUS protocol type; value 0x00), a MODBUS transaction is

instantiated.

The maximum number of MODBUS transactions the server can instantiate is defined by
the "NumberMaxOfTransaction" parameter (A system or a configuration parameter).

In case of no more transactions available, the server builds a MODBUS exception
response (Exception code 6 : Server Busy).

If a MODBUS transaction is available, it's initialized in order to memorize the following
information:

• The TCP connection identifier used to send the indication (given by the TCP
Management)

• The MODBUS Transaction ID (given in MBAP Header)
• The Unit Identifier (given in MBAP Header)

Then the MODBUS PDU is parsed. The function code is first controlled :
 in case of invalidity a MODBUS exception response is built (Exception code 1 : Invalid

function).
 If the function code is accepted, the server initiates the "MODBUS Service

processing" activity.

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 30/46

4.4.2.3 MODBUS service processing

Analyse
requested service

Local Service
processing

Build Modbus
ResponseBuild Modbus

Exception Response

Send an invocation to
User Application
through MB Backend
interface

Response
processing

[Need User App processing]

[Completed]

[Local processing]

Transaction_accepted

[Processing OK]

[Processing not completed]

[Processing not OK]

Response_from_user_App

[Processing OK]

[Processing Not OK]

Figure 17: MODBUS service processing activity diagram

The processing of the required MODBUS service can be done in different ways
depending on the device software and hardware architecture as described in the
hereafter examples :

• Within a compact device or a mono-thread architecture where the MODBUS
server can access directly to the user application data, the required service can
be processed "locally" by the server itself without invoking the Back End service.
The processing is done according to the MODBUS Application Protocol
Specification [1]. In case of an error, a MODBUS exception response is built.

• Within a modular multi-processor device or a multi-thread architecture where the
"communication layers" and the "user application layer" are 2 separate entities,
some trivial services can be processed completely by the Communication entity
while some others can require a cooperation with the User Application entity
using the Back End service.

To interact with the User Application, the MODBUS Backend service must implement all
appropriate mechanisms in order to handle User Application transactions and to
manage correctly the User Application invocations and associated responses.

4.4.2.4 User Application Interface (Backend Interface)
Several strategies can be implemented in the MODBUS Backend service to achieve its
job although they are not equivalent in terms of user network throughput, interface
bandwidth usage, response time, or even design workload.

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 31/46

The MODBUS Backend service will use the appropriate interface to the user
application :

 Either a physical interface based on a serial link, or a dual-port RAM scheme, or
a simple I/O line, or a logical interface based on messaging services provided by
an operating system.

 The interface to the User Application may be synchronous or asynchronous.

The MODBUS Backend service will also use the appropriate design pattern to get/set
objects attributes or to trigger services. In some cases, a simple "gateway pattern" will
be adequate. In some other cases, the designer will have to implement a "proxy
pattern" with a corresponding caching strategy, from a simple exchange table history to
more sophisticated replication mechanisms.

The MODBUS Backend service has the responsibility to implement the protocol
transcription in order to interact with the User Application. Therefore, it can have to
implement mechanisms for packet fragmentation/reconstruction, data consistency
guarantee, and synchronization whatever is required.

4.4.2.5 MODBUS Response building
Once the request has been processed, the MODBUS server has to build the response
using the adequate MODBUS server transaction and has to send it to the TCP
management component.
Depending on the result of the processing two types of response can be built :

 A positive MODBUS response :
 The response function code = The request function code

 A MODBUS Exception response :
 The objective is to provide to the client relevant information concerning the

error detected during the processing ;
 The response function code = the request function code + 0x80 ;
 The exception code is provided to indicate the reason of the error.

Exception
Code

MODBUS name Comments

01 Illegal Function
Code

The function code is unknown by the server

02 Illegal Data
Address

Dependant on the request

03 Illegal Data Value Dependant on the request
04 Server Failure The server failed during the execution
05 Acknowledge The server accepted the service invocation but the

service requires a relatively long time to execute. The
server therefore returns only an acknowledgement of the
service invocation receipt.

06 Server Busy The server was unable to accept the MB Request PDU.
The client application has the responsibility of deciding if
and when to re-send the request.

0A Gateway problem Gateway paths not available.
0B Gateway problem The targeted device failed to respond. The gateway

generates this exception

The MODBUS response PDU must be prefixed with the MBAP header which is built
using data memorized in the transaction context.

• Unit Identifier
The Unit Identifier is copied as it was given within the received MODBUS request
and memorized in the transaction context.

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 32/46

• Length
The server calculates the size of the MODBUS PDU plus the Unit Identifier byte.
This value is set in the "Length" field.

• Protocol Identifier
The Protocol Identifier field is set to 0x0000 (MODBUS protocol), as it was given
within the received MODBUS request.

• Transaction Identifier
This field is set to the "Transaction Identifier" value that was associated with the
original request and memorized in the transaction context.

Then the MODBUS response must be returned to the right MODBUS Client using the
TCP connection memorized in the transaction context. When the response is sent, the
transaction context must be free.

5 IMPLEMENTATION GUIDELINE

The objective of this section is to propose an example of a messaging service
implementation.
The model describes below can be used as a guideline during a client or a server
implementation of a MODBUS messaging service.

Informative Note: The messaging service implementation is the responsibility of the
User.

5.1 OBJECT MODEL DIAGRAM

Communication application layer

TCP management

Configuration layer

InterfaceUserApplication

InterfaceIndicationMsg InterfaceResponseMsg

User Application

Figure 18: MODBUS Messaging Service Object Model Diagram

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 33/46

Four main packages compose the Object Model Diagram:
• The Configuration layer which configures and manages operating modes of

components of other packages
• The TCP Management which interfaces the TCP/IP stack and the communication

application layer managing TCP connection. It implies the management of socket
interface.

• The Communication application layer which is composed by the MODBUS client
on one side and the MODBUS server on the other side. This package is linked
with the user application.

The User application, which corresponds to the device application, is completely dependent
on the device and therefore it will be not part of this Specification.

This model is independent of implementation choices like the type of OS, the memory
management, etc. In order to guarantee this independence generic Interface layers are
used between the TCP management layer and the communication layer and between
the communication layer and the user application layer.
Different implementations of this interface can be realized by the User: Pipe between
two tasks, shared memory, serial link interface, procedural call, etc.
Some assumptions have to be taken to define the hereafter implementation model :
• Static memory management
• Synchronous treatment of the server
• One task to process the receptions on all sockets.

5.1.1 TCP management package

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 34/46

TCP management
package

InterfaceIndicationMsg
(from Logical View) InterfaceResponseMsg

(from Logical View)

ItemConnexion
SocketDescript : Int
IPSource : Long
PortSource : Long
PortDest : Long
IPdestination : long
BufferIn : Char*
BufferOut : Char*

ConnexionMgt
NbConnectionSupported : Int
NbLocalConnection : Int
NbRemoteConnection : int

m_sendData()
m_Receivedata()
m_isConnectionAuthorized()

InterfaceConnex ion

GetObjectConnexion()
FreeObjectConnexion()
RetreivingObjectConnexion()

MBAP

IsMdbHeader()
GetMessagelength()
WriteTransactionId()
ReadTransactionId()

TCPConnexion

IsConnexionRequest()
OpenConnexion()
AcceptConnexion()
CloseConnexion()
IsEtablishedConnexion()

StackTCP IP

Socket interface()

Figure 19: MODBUS TCP management package

The TCP management package comprises the following classes :

CInterfaceConnexion: The role of this class consists in managing memory pool for
connections.

CItemConnexion: This class contains all information needed to describe a connection.

CTCPConnexion:, This class provides methods for managing automatically a TCP
connection (Interface socket is provided by CStackTCP_IP).

CConnexionMngt: This class manages all connections and send query/response to
MODBUS Server/MODBUS Client through CinterfaceIndicationMsg and
CInterfaceResponseMsg. This class also treats the Access control for the connection
opening.

CMBAP: This class provides methods for reading/writing/analyzing the MODBUS
MBAP.

CStackTCP_IP: This class Implements socket services and provides parameterization
of the stack.

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 35/46

5.1.2 Configuration layer package

Operating Mode

m_Configure()
m_Start()
m_Stop()
m_Reset()

ConfigurationObject
GlobalState : char
MyModbusAddress : Int
MyIPAddress : long
MyPortNumber : Long
NumberAuthorized_IP : int
ListAuthorized_IP : int
NumberForbidden_IP : Int
ListForbidden_IP : long()
NumberConnect ionSupported : int

TCP management
(from Logical View)

Communication applicat ion layer
(from Logical View)

--

Configuartion layer
package

Figure 20: MODBUS Configuration layer package

The Configuration layer package comprises the following classes :

TConfigureObject: This class groups all data needed for configuring each other
component. This structure is filled by the method m_Configure from the class
CoperatingMode. Each class needing to be configured gets its own configuration data
from this object. The configuration data is implementation dependent therefore the list
of attributes of this class is provided as an example.

COperatingMode: The role of this class is to fill the TConfigureObject (according to
the user configuration) and to manage the operating modes of the classes described
below:

 CMODBUSServer
 CMODBUSClient

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 36/46

 CconnexionMngt

5.1.3 Communication layer package

InterfaceUserApplication
(from Logical View)

ModbusServer

m_ServerReceivingMessage()
m_ServerModbus()
m_BuildResponse()
m_InitServerfunction()

ModbusPDU

IsMdbAnalysisOfDataCorrect()
m_BuildModbusException()
m_WritePDU()

Transaction
TransactionId : int
TimeSnapShot : int

IsTransactionTimeOut()
m_WriteTransactionID()
m_StartTimesnapShoot()

InterfaceResponseMsg
(from Logical View)

InterfaceIndicationMsg
(from Logical View)

ModbusClient

m_ClientReceivingResponse()
m_ClientReceivingMessage()
m_ClientModbus()

--

--

Communication
Application layer
package

Figure 21: MODBUS Communication Application layer package

The Communication Application layer package comprises the following classes :

CMODBUSServer: MODBUS query is received from class CInterfaceIndicationMsg
(by the method m_ServerReceivingMessage). The role of this class is to build the
MODBUS response or the MODBUS Exception according the query (incoming from
network). This class implements the Graph State of MODBUS server. Response can be
built only if class COperatingMode has sent both user configuration and right operating
modes.

CMODBUSClient: MODBUS query is read from class CInterfaceUserApplication, The
client task receives query by the method m_ClientReceivingMessage. This class

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 37/46

implements the State Graph of MODBUS client and manages transactions for linking
query with response (from network). Query can be sent over network only if class
CoperatingMode has sent both user configuration and right operating modes.

CTransaction: This class implements methods and structures for managing
transactions.

5.1.4 Interface classes

CInterfaceUserApplication: This class represents the interface with the user
application, it provides two methods to access to the user data. In a real
implementation this method can be implemented in different way depending of the
hardware and software device capabilities (equivalent to an end-driver, example access
to PCMCIA, shared memory, etc).

CInterfaceIndicationMsg: This Interface class is proposed for sending query from
Network to the MODBUS Server, and for sending response from Network for the Client.
This class interfaces TCPManagement and ‘Communication Application Layer’
packages (From Network). The implementation of this class is device dependent.

 CInterfaceResponseMsg: This Interface class is used for receiving response from the
Server and for sending query from the client to the Network. This class interfaces
packages ‘Communication Application Layer’ and package ‘TCPManagement’ (To
Network). The implementation of this class is device dependent.

5.2 IMPLEMENTATION CLASS DIAGRAM

The following Class Diagram describes the complete diagram of a proposal
implementation.

Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 38/46

Figure 22: Class Diagram

Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 39/46

5.3 SEQUENCE DIAGRAMS
Two Sequence diagrams are described hereafter are an example in order to illustrate a
Client MODBUS transaction and a Server MODBUS transaction.

Figure 23: MODBUS client sequence diagram

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 40/46

General comments for a better understanding of the Client sequence diagram:

First step: A Reading query comes from User Application (method m_Read).

Second Step: The ‘Client’ task receives the MODBUS query (method
m_ClientReceivingMessage). This is the entry point of the Client. To associate the
query with the corresponding response when it will arrive, the Client uses a
Transaction resource (Class CTransaction). The MODBUS query is sent to the
TCP_Management by calling the class interface CInterfaceResponseMsg (method
m_MODBUSRequest)

Third Step: If the connection is already established there is nothing to do on
connection, the message can be send over the network. Otherwise, a connection must
be opened before the message can be sent over the network.
At this time the client is waiting for a response (from a remote server)

Fourth step: Once a response has been received from the network, the TCP/IP stack
receives data (method m_EventOnSocket is implicitly called).
 If the connection is already established, then the MBAP is read for retrieving the
connection object (connection object gives memory resource and other information).
Data coming from network is read and confirmation is sent to the client task via the
class Interface CInterfaceIndicationMsg (method m_MODBUSConfirmation). Client
task receives the MODBUS Confirmation (method m_ClientReceivingResponse).
Finally the response is written to the user application (method m_WriteData), and
transaction resource is freed.

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 41/46

Hereafter is an example of a MODBUS Server exchange.

 Figure 24: MODBUS server Diagram

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 42/46

General comments for a better understanding of the Server sequence diagram:

First step: a client has sent a query (MODBUS query) over the network.
The TCP/IP stack receives data (method m_EventOnSocket is implicitly called).

Second step: The query may be a connection request or not (method
m_IsConnexionRequest).
If the query is a connection request, the connection object and buffers for receiving
and sending the MODBUS frame are allocated (method m_GetObjectConnexion).
Just after, the connection access control must be checked and accepted (method
m_AcceptConnexion)

Third step: If the query is a MODBUS request, the complete MODBUS Query can be
read (method m_ReceiveData). At this time the MBAP must be analyzed (method
m_IsMdbHeaderCorrect). The complete frame is sent to the Server task via the
CinterfaceIndicationMessaging Class (method m_MODBUSIndication). Server task
receives the MODBUS Query (method m_ServerReceivingMessage) and analyses it.
If an error occurs (function code not supported, etc), a MODBUSException frame is
built (m_BuildMODBUSException), otherwise the response is built.

Fourth Step: The response is sent over the network via the
CinterfaceResponseMessaging (method m_MODBUSResponse). Treatment on the
connection object is done by the method m_SendData (retrieve the connection
descriptor, etc) and data is sent over the network.

5.4 CLASSES AND METHODS DESCRIPTION

5.4.1 MODBUS Server Class

Class CMODBUSServer

class CMODBUSServer

Stereotype implementationClass
Provides methods for managing MODBUS Messaging in Server Mode

Field Summary
protected char GlobalState

state of the MODBUS Server

Constructor Summary
CMODBUSServer(TConfigureObject * lnkConfigureObject)
Constructor : Create internal object

Method Summary

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 43/46

protected void m_InitServerFunctions(void)
Function called by the constructor for filling array of functions
'm_ServerFunction'

bool m_Reset(void)
Method for Resetting Server, return true if reset

int m_ServerReceivingMessage(TItemConnexion * lnkMODBUS)
Interface with CindicationMsg::m_MODBUSIndication for receiving Query
from NetWork return negative value if problem

bool m_Start(void)
Method for Starting Server, return true if Started

bool m_Stop(void)
Method for Stopping Server, return true if Stopped

protected void m_tServerMODBUS(void)
Server MODBUS task ...

5.4.2 MODBUS Client Class

Class CMODBUSClient

class CMODBUSClient
Provides methods for managing MODBUS Messaging in Client Mode

Stereotype implementationClass

Field Summary
protected

char
GlobalState
State of the MODBUS Client

Constructor Summary
CMODBUSClient(TConfigureObject * lnkConfigureObject)
Constructor : Create internal object , initialize to 0 variables.

Method Summary
int m_ClientReceivingMessage(TItemConnexion * lnkMODBUS)

Interface provided for receiving message from application Layer Typically :
Call CinterfaceUserApplication::m_Read for reading data call
CInterfaceConnexion::m_GetObjectConnexion for getting memory for a
transaction. Return negative value if problem

int m_ClientReceivingResponse(TitemConnexion *
lnkTItemConnexion)
Interface with CindicationMsg::m_Confirmation for receiving response from
network return negative value if problem

bool m_Reset(void)
Method for Resetting component, return true if reset

bool m_Start(void)
Method for Starting component, return true if started

bool m_Stop(void)

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 44/46

Method for Stopping component, return true if stopped
protected void m_tClientMODBUS(void)

Client MODBUS task....

5.4.3 Interface Classes

5.4.3.1 Interface Indication class

Class CInterfaceIndicationMsg

Direct Known Subclasses:

CConnexionMngt

class CInterfaceIndicationMsg
Class for sending message from TCP_Management to MODBUS Server or Client

Stereotype interface

Method Summary
int m_MODBUSConfirmation(TItemConnexion * lnkObject)

Method for Receiving incoming Response, calling the Client : could be by
reference, by Message Queue, Remote procedure Call, ...

int m_MODBUSIndication(TItemConnexion * lnkObject)
Method for reading incoming MODBUS Query and calling the Server : could
be by reference, by Message Queue, Remote procedure Call, ...

5.4.3.2 Interface Response Class

Class CInterfaceResponseMsg

Direct Known Subclasses:

CMODBUSClient, CMODBUSServer

class CInterfaceResponseMsg
Class for sending response or sending query to TCP_Management from Client or Server

Stereotype interface

Method Summary
TitemConnexion

*

m_GetMemoryConnexion(unsigned long IPDest)
Get an object ITemConnexion from memory pool. Return -1 if not enough
memory

int m_MODBUSRequest(TItemConnexion * lnkCMODBUS)
Method for Writing incoming MODBUS Query Client to ConnexionMngt :

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 45/46

could be by reference, by Message Queue, Remote procedure Call, ...
int m_MODBUSResponse(TItemConnexion * lnkObject)

Method for writing Response from MODBUS Server to ConnexionMngt
could be by reference, by Message Queue, Remote procedure Call, ...

5.4.4 Connexion Management class

Class CConnexionMngt

class CConnexionMngt
Class that manages all TCP Connections

Stereotype implementationClass

Field Summary
protected

char
GlobalState
Global State of the Component ConnexionMngt

Int NbConnectionSupported
Global number of connections

Int NbLocalConnection
Number of connections opened by the local Client to a remote Server

Int NbRemoteConnection
Number of connections opened by a remote Client to the local Server

Constructor Summary
CconnexionMngt(TConfigureObject * lnkConfigureObject)
Constructor : Create internal object , initialize to 0 variables.

Method Summary
int m_EventOnSocket(void)

wake-up
bool m_IsConnectionAuthorized(unsigned long IPAddress)

Return true if new connection is authorized
int m_ReceiveData(TItemConnexion * lnkConnexion)

Interface with CTCPConnexion::write method for reading data from network
return negative value if problem

bool m_Reset(void)
Method for Resetting ConnectionMngt component return true if Reset

int m_SendData(TItemConnexion * lnkConnexion)
Interface with CTCPConnexion::read method for sending data to the
network Return negative value if problem

bool m_Start(void)
Method for Starting ConnectionMngt component return true if Started

bool m_Stop(void)
Method for Stopping component return true if Stopped

MODBUS Messaging on TCP/IP Implementation Guide V1.0a Modbus-IDA

June 4, 2004 http://www.Modbus-IDA.org 46/46

	INTRODUCTION
	OBJECTIVES
	CLIENT / SERVER MODEL
	REFERENCE DOCUMENTS

	ABBREVIATIONS
	CONTEXT
	PROTOCOL DESCRIPTION
	General communication architecture
	MODBUS On TCP/IP Application Data Unit
	MBAP Header description

	MODBUS FUNCTIONS CODES DESCRIPTION

	FUNCTIONAL DESCRIPTION
	MODBUS COMPONENT ARCHITECTURE MODEL
	TCP CONNECTION MANAGEMENT
	Connections management Module
	General description
	Connection management description

	Impact of Operating Modes on the TCP Connection
	Communication break between two operational end points:
	Crash and Reboot of the Server end point
	Crash and Reboot of the Client

	Access Control Module

	USE of TCP/IP STACK
	Use of BSD Socket interface
	TCP layer parameterization
	IP layer parameterization
	IP Parameters

	COMMUNICATION APPLICATION LAYER
	MODBUS Client
	MODBUS client design
	Build a MODBUS Request
	Process MODBUS Confirmation
	Time-out management

	MODBUS Server
	MODBUS Server Design
	MODBUS PDU Checking
	MODBUS service processing
	User Application Interface (Backend Interface)
	MODBUS Response building

	IMPLEMENTATION GUIDELINE
	OBJECT MODEL DIAGRAM
	TCP management package
	Configuration layer package
	Communication layer package
	Interface classes

	IMPLEMENTATION CLASS DIAGRAM
	SEQUENCE DIAGRAMS
	CLASSES AND METHODS DESCRIPTION
	MODBUS Server Class
	MODBUS Client Class
	Interface Classes
	Interface Indication class
	Interface Response Class

	Connexion Management class

